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Abstract 

A method for anomaly detection is introduced in which 
“normal” is dejined by short-range correlations in a pro- 
cess’ system calls. Initial experiments suggest that the deji- 
nition is stable during normal behavior for standard UNIX 
programs. Furthel; it is able to detect several common in- 
trusions involving sendmail and lpr .  This work is part 
of a research program aimed at building computer security 
systems that incorporate the mechanisms and algorithms 
used by natural immune systems. 

1 Introduction 

We are interested in developing computer security meth- 
ods that are based on the way natural immune systems dis- 
tinguish self from other. Such “artificial immune systems” 
would have richer notions of identity and protection than 
those afforded by current operating systems, and they could 
provide a layer of general-purpose protection to augment 
current computer security systems. An important prereq- 
uisite of such a system is an appropriate definition of self, 
which is the subject of this paper. We view the use of im- 
mune system inspired methods in computer security as com- 
plementary to more traditional cryptographic and determin- 
istic approaches. By analogy, the specific immune response 
is a secondary mechanism that sits behind passive barriers 
(e.g., the skin and mucus membranes) and other innate re- 
sponses (e.g., generalized inflammatory mechanisms). In 
related work, we studied a number of immune system mod- 
els based on these secondary mechanisms [ 10, 13, 1 11 which 
provide the inspiration for the project described here. 

The natural immune system has several properties that we 
believe are important for robust computer security. These 
include the following: (1) detection is distributed and each 
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copy of the detection system is unique, (2) detection is prob- 
abilistic and on-line, and (3) detectors are designed to rec- 
ognize virtually any foreign particle, not just those that have 
been previously seen. These properties and their signifi- 
cance are discussed in [ 1 11. 

Previously, we developed a computer virus detection 
method based on these principles [ 111. The method was 
implemented at the file-authentication level, and self was 
defined statically in terms of files containing programs or 
other protected data. However, if we want to build a general- 
purpose protective capability we will need a more flexible 
sense of self. One problem with this is that what we mean 
by self in a computer system seems at first to be more dy- 
namic than in the case of natural immune systems. For 
example, computer users routinely load updated software, 
edit files, run new programs, or change their personal work 
habits. New users and new machines are routinely added 
to computer networks. In each of these cases, the normal 
behavior of the system is changed, sometimes dramatically, 
and a successful definition of self will need to accommodate 
these legitimate activities. An additional requirement is to 
identify self in such a way that the definition is sensitive 
to dangerous foreign activities. Immunologically, this is 
known as the ability to distinguish between self and other. 
Too narrow a definition will result in many false positives, 
while too broad a definition of self will be tolerant of some 
unacceptable activities (false negatives). 

This paper reports preliminary results aimed at estab- 
lishing such a definition of self for Unix processes, one in 
which self is treated synonymously with normal behavior. 
Our experiments show that short sequences of system calls 
in running processes generate a stable signature for normal 
behavior. The signature has low variance over a wide range 
of normal operating conditions and is specific to each dif- 
ferent kind of process, providing clear separation between 
different kinds of programs. Further, the signature has a 
high probability of being perturbed when abnormal activi- 
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ties, such as attacks or attack attempts, occur. These results 
are significant because most prior published work on intru- 
sion detection has relied on either a much more complex 
definition of normal behavior or on prior knowledge about 
the specific form of intrusions. We suggest that a siimpler 
approach, such as the one described in this paper, can be ef- 
fective in providing partial protection from intrusions. One 
advantage of a simple definition for normal behavior is the 
potential for implementing an on-line monitoring system 
that runs in real-time. 

2 Related Work 

There are two basic approaches to intrusion detection 
[ 16, 151: misuse intrusion detection and anomaly intrusion 
detection. In misuse intrusion detection, known1 patterns of 
intrusion (intrusion signatures) are used to try to identify in- 
trusions when they happen. In anomaly intrusion detection, 
it is assumed that the nature of the intrusion is unknown, but 
that the intrusion will result in behavior differeint from that 
normally seen in the system. Many detection systems com- 
bine both approaches, a good example being IDES [ 18,4,8]. 
In this paper we are concerned only with anomaly intmsion 
detection. 

Most previous work on anomaly intrusion detection has 
determined profiles for user behavior. Intrusions are de- 
tected when a user behaves out of character. Thiese anoma- 
lies are detected by using statistical profiles, as in IDES 
[18, 4, 81, inductive pattern generation, as in TIM [19], 
or neural networks [ 121. Generation of user profiles by 
such methods requires an audit trail of actions for each 
user. These are typically slowly adaptive, changing profiles 
gradually to accommodate changing user behavior. Abrupt 
changes in behavior are flagged as irregular and identified 
with intrusions. 

An alternative approach is taken by Fink, Levitt and KO 
[9, 141. Instead of trying to build up normal user profiles, 
they focus on determining normal behavior for privileged 
processes, those that run as root. They define normal be- 
havior using a program specification language, in which the 
allowed operations (system calls and their parameters) of a 
process are formally specified. Our approach is similar to 
theirs, in that we consider processes that run as root. How- 
ever, it differs in that we use a much simpler representation 
of normal behavior. We rely on examples of normal runs 
rather than formal specification of a program’s expected be- 
havior, and we ignore parameter values. An advantage of 
our approach is that we do not have to determine a behavioral 
specification from the program code; we simply accumulate 
it by tracing normal runs of the program. 

3 Defining Self 

Program code stored on disk is unlikely to cause damage 
until it runs. System damage is caused by running programs 
that execute system calls. Thus, we restrict our attention to 
system calls iin running processes. Further, we consider only 
privileged processes. Monitoring privileged processes has 
several advantages over monitoring user profiles[ 141. Root 
processes are more dangerous ithan user processes because 
they have access to more parts of the computer system. 
They have a limited range of behavior, and their behavior is 
relatively stahle over time. Also, root processes, especially 
those that listen to a particular port, constitute a natural 
boundary wil h respect to external probes and intrusions. 
However, theire are some limitations. For example, it will be 
difficult to detect an intruder masquerading as another user 
(having previously obtained a legal password). 

Every program implicitly specifies a set of system call 
sequences that it can produce. These sequences are de- 
termined by ithe ordering of system calls in the set of the 
possible execution paths through the program text. During 
normal execution, some subsei of these sequences will be 
produced. For any nontrivial program, the theoretical sets 
of system call sequences will be huge, and it is likely that 
any given execution of a program will produce a complete 
sequence of calls that has not been observed. However, the 
local (short range) ordering of system calls appears to be 
remarkably consistent, and this suggests a simple definition 
of self, or normal behavior. 

We define normal behavior in terms of short sequences 
of system calls in a running pracess, currently sequences of 
lengths 5,6,  and 1 1. The overall1 idea is to build up a separate 
database of normal behavior for each process of interest. The 
database will be specific to aparticular architecture, software 
version and Configuration, local administrative policies, and 
usage patterns. Given the large variability in how individual 
systems are currently configured, patched, and used, we 
conjecture that these individual databases will provide a 
unique definition of self for most systems. Once a stable 
database is constructed for a given process, the database 
can be used to monitor the process’ ongoing behavior. The 
sequences of system calls form ithe set of normal patterns for 
the database, and abnormal sequences indicate anomalies in 
the running process. 

This definiition of normal belhavior ignores many aspects 
of process behavior, such as the parameter values passed to 
system calls, timing information, and instruction sequences 
between system calls. Certain intrusions might only be 
detectable by examing other aspects of a process’s behavior, 
and so we might need to consider them later. Our philosophy 
is to see how far we can go with the simple assumption. 
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3.1 Details 

call 
open 
read 
mmap 

open, read, mmap, open, open, getrlimit, mmap, close 

This trace would generate 4 mismatches, because: 

0 open is not followed by open at position 3, 

0 read is not followed by open at position 2, 

open is not followed by open at position 1, and 

0 open is not followed by getrlimit at position 2. 

We record the number of mismatches as a percentage of 
the total possible number of mismatches. The maximum 
number of pairwise mismatches for a sequence of length L 
with a lookahead of k is: 

position 1 position 2 position 3 
read mmap mmap 
mmap mmap 
mmap 

open 

read 
mmap 

getrlimit 
close 

read, mmap “ap, 
getrlimit close 
mmap mmap open 
mmap, open, getrlimit, 
open, getrlimit mmap 
close 
mmap close 

‘Due to a limitation of our tracing package, we are not currently fol- 
lowing virtual forks. 

k ( L - k )  + (k- l ) + ( k - 2 )  + . . .+ 1 = k ( L -  (k+ 1)/2). 

In our example trace, L = 8, k = 3, and we have 4 mis- 
matches. From the above formula, we get a maximum 
database size of 18, giving a 22% miss rate. Mismatches are 
the only observable that we use to distinguish normal from 
abnormal. 

This simple algorithm can be efficiently implemented to 
run in O ( N )  time, where N is the length of the trace (in terms 
of system calls). For example, our current implementation 
analyzes traces at an approximate rate of 1250 system calls 
per second. 

4 Experiments 

In the previous section we introduced a definition for 
normal behavior, based on short sequences of system calls. 
The usefulness of the definition will largely be determined 
by the answers to the following questions: 

What size database do we need to capture normal be- 
havior? 

What percentage of possible system call sequences is 
covered by the database of “normal” system call se- 
quences? 

Does our definition of normal behavior distinguish be- 
tween different kinds of programs? 

Does our definition of normal detect anomalous behav- 
ior? 

This section reports our preliminary answers to these ques- 
tions. In these experiments, we focus on sendmail al- 
though we report some data for lpr. The sendmail pro- 
gram is sufficiently varied and complex to provide a good 
initial test, and there are several documented attacks against 
sendmail that can be used for testing. If we are successful 
with sendmail we conjecture that we will be successful 
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with many other privileged Unix processes. All of our data 
to date have been generated on Sun SPARCstatiions running 
unpatched versions of SunOS 4.1.1 and 4.1.4, using the in- 
cluded sendmail. The strace package, version 3.0, 
was used to gather information on system calls. 

4.1 Building a normal database 

Although the idea of collecting traces of normal behavior 
sounds simple, there are a number of decisionis that must 
be made regarding how much and what kind of normal 
behavior is appropriate. Specifically, should we geinerate 
an artificial set of test messages that exercises; all normal 
modes of sendimail or should we monitor real user mail 
and hope that it covers the full spectrum of normal (more 
in the spirit of our approach)? This question is especially 
relevant for sendmai 1 because its behavior is so varied. 
If we fail to capture all the sources of legal variations, then 
it will be easier to detect intrusions and be an unfair test 
because of false positives. We elected to use a suite of 
1 12 artificially constructed messages, which includled as 
many normal variations as possible. These 112 messages 
produced a a combined trace length of over 1.5 million 
system calls. For a window size of 6, the 112 messages 
produced a database with - 1500 entries, where one entry 
corresponds to a single pair of system calls with a lookahead 
value (e.g., read is a legal successor to open at positialn 1). 

Once the normal database is defined, the next decision is 
how to measure new behavior and determine if it is nonmal or 
abnormal. The easiest and most natural measure is simply to 
count the number of mismatches between a new itrace and the 
database. We report these counts both as a raw numbler and 
as a percentage of the total number of matches performed in 
the trace, which reflects the length of the trace. Ideally, we 
would like these numbers to be zero for new examples of 
normal behavior, and for them to jump significantly when 
abnormalities occur. In a real system, a threshold value 
would need to be determined, below which a behavior is 
said to be normal, and above which it is deemed anomalous. 
In this study, we simply report the numbers, because we are 
not taking any action or making a binary decision based on 
them. Because our normal database covers most variations 
in normal, any mismatches are in principle significant. 

Returning to our earlier questions, the size of the nor- 
mal database is of interest for two reasons. First, if the 
database is small then it defines a compact signature for the 
running process that would be practical to check in real-time 
while the process is active. Conversely, if the database is 
large then our approach will be too expensive to use for 
on-line monitoring. Second, the size of the normal database 
gives an estimate of how much variability there is in the 
normal behavior of sendmai 1. This consideration is cru- 
cial because too much variability in normal would preclude 

I - 
- Type of Behavior 

message length 
- 

number of messages 
message content 
subject 
senderheceiver 
different mailers 
forwarding 
bounced mail 
queuing 
vacation 

## of msgs. 
12 
70 
6 
2 
4 
4 
4 
4 
4 
2 

b:otal I 112 

Table 1. Types and number of mail messages 
used to generate the normal database for 
sendmail. 

detecting anomalies. In the worst case, if all possible se- 
quences of length 6 show up as, legal normal behavior, then 
no anomalies could ever be detected. A related question is 
how much normal behavior should be sampled to provide 
good coverage of the set of alllowable sequences. We used 
the following, procedure to build the normal database:2 

1. Enumer,ate potential sources of variation for normal 
sendmini 1 operation. 

2. Generatle example mail messages that cause 
sendmail to exhibit these variations. 

3. Build a inormal data base from the sequences produced 
by step 2. 

4. Continue generating normal mail messages, recording 
all mismatches and adding them to the normal database 
as they occur. 

We considered variations in message length, number 
of messages, message content (text, binary, encoded, en- 
crypted), message subject line, senderheceiver and mailers. 
We also look.ed at the effects of forwarding, bounced mail 
and queuing. Lastly, we considered the effects of all these 
variations in the cases of remote and local delivery. For each 
test, we generated three databases, one for each different 
window size (5, 6 and 11). Each database incorporates all 
of the features described above, producing zero mismatches 
for mail with any of these features. 

Table 1 shows how many messages of each type were 
used to generate the normal daiabases. We began with mes- 
sage length and tried 12 different message lengths, ranging 
from 1 line lo 300,000 bytes. From this, we selected the 

'We followeld a similar procedure it0 generate the normal database for 
lpr and obtained a database of 534 normal pattems. 
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shortest length that produced the most varied pattern of sys- 
tem calls (50,000 bytes), and then used that as the standard 
message length for the remaining test messages. Similarly, 
with the number of messages in a sendmail run, we first 
sent 1 message and traced sendmail then we sent 5 mes- 
sages, tracing sendmail, and so forth, up to 20 messages. 
This was intended to test sendmail ’ s response to bursts 
of messages. We tested message content by sending mes- 
sages containing ascii text, uuencoded data, gzipped data, 
and a pgp encrypted file. In each case, a number of vari- 
ations was tested and a single default was selected before 
moving on to the next stage. These messages constituted 
our corpus of normal behavior. We reran this set of stan- 
dard messages on each different OS and sendmail cf 
variant that we tried, thus generating a normal database that 
was tailored to the exact operating conditions under which 
sendmail was running. Of the features considered, the 
following seemed to have little or no effect: the number of 
messages, message content, subject line, sendersheceivers, 
mailers and queuing. Two more unusual features, forwarded 
mail and bounced mail, affected remote traces far less than 
%oca1 traces. 

Figure 1 shows how new patterns are added to the 
database over time during a normal sendmail run. The 
data shown are for 10,000 system calls worth of behavior, 
but we have also performed runs out to 1.5 million system 
calls (data not shown), with essentially zero mismatches. 
Overall, the variability in the behavior of sendmai 1 at the 
system call level is much smaller than we expected. 

Finally, we ask what percentage of the total possible 
patterns (for sequences of length 6) is covered by the nor- 
mal database. For example, if the database is completely 
full (all possible patterns have been recorded as normal) 
by 3000 system calls, then it would hardly be surprising 
that no new patterns are seen over time. However, as we 
discussed earlier, such variability would be useless for iden- 
tifying anomalous behavior. Consequently, the goal is to 
find a database that is small with respect to the space of 
possible patterns. Our initial data here are encouraging. We 
estimate that the sendmai 1 database described above cov- 
ers about 5 x lop5% of the total possible patterns of system 
calls (that is, sequences built from all possible system calls, 
about 180 for Unix, not just those invoked by sendmail), 
an extremely small fraction. This figure is somewhat mis- 
leading, however, because it is unlikely that the sendmai 1 
program is capable of generating many of these sequences. 
The most accurate comparison would be against a database 
that contained all the patterns that sendmai 1 could possi- 
bly produce. This would require a detailed analysis of the 
sendmail source code, an area of future investigation. 

Process 
sendmail 
Is 
1s -1 
Is -a 
PS 
ps -ux 
finger 
Ping 
ftP 
pine 
httud 

5 
% # 

0.0 0 
6.9 23 

30.0 239 
6.7 23 
1.2 35 
0.8 45 
4.6 21 

13.5 56 
28.8 450 
25.4 1522 
4.3 310 

6 
% # 

0.0 0 
8.9 34 

32.1 304 
8.3 34 
8.3 282 
8.1 564 
4.9 27 

14.2 70 
31.5 587 
27.6 1984 
4.8 436 

11 
% # 

0.0 0 
13.9 93 
38.0 640 
13.4 93 
13.0 804 
12.9 1641 
5.7 54 

15.5 131 
35.1 1182 
30.0 3931 

4.7 824 

Table 2. Distinguishing sendmail from other 
processes. Each column lists two numbers: 
the percentage of abnormal sequences (la- 
beled %) and the number of abnormal se- 
quences (labeled #) in one typical trace of 
each process (when compared against the 
normal database for sendmail). The columns 
labeled 5, 6 and 11 refer to the sequence 
length (window size) used for analysis. The 
sendmail data show no misses, because 
sendmail is being compared against its own 
database. 

4.2 Distinguishing Between Processes 

To determine how the behavior of sendmai 1 compares 
with that of other processes, we tested several common pro- 
cesses against the normal sendmail database with 1500 
entries. Table 2 compares normal traces of several com- 
mon processes with those of sendmail. These processes 
have a significant number of abnormal sequences, approx- 
imately, 5-32% for sequences of length 6, because the ac- 
tions they perform are considerably different from those 
of sendmail. We also tested the normal database for 
l p r  and achieved similar results (data not shown). l p r  
shows even more separation than that shown in Figure 2, 
presumably because it is a smaller program with more lim- 
ited behavior. These results suggest that the behavior of 
different processes is easily distinguishable using sequence 
information alone. 

4.3 Anomalous Behavior 

We generated traces of three types of behavior that dif- 
fer from that of normal sendmail: traces of success- 
ful sendmai 1 intrusions, traces of sendmai 1 intrusion 

124 



1600 i 
1400 

a 8 1200 
-8 c 
8 1000 

4 800 

*- 
0 

U) 

600 

400 

200 

0 
0 1000 2000 3000 41300 5000 6000 7000 80013 9000 10000 

# of System Calls 

Figure 1. Building a normal database. The graph shows how rnany new patterns are added to the 
database over time. By running our artificially constructed set alf standard messages, a wide variety 
of normal behavior is seen in the early pairt of the run (out to about 3000 system calls). After this 
time, virtually no new patterns are enc:ountrered under normal sendmail conditions. These data are a 
concatenation of the logs used to generate our normal database. 

attempts that failed, and traces of error conditions. In 
each of these cases, we compared the trace with the: nor- 
mal sendmail database and recorded the number of mis- 
matches. In addition, we tested one successful 1pr intrusion 
and compared its trace with a normal database for lpr .  Ta- 
ble 3 shows the results of these comparisons. Each row in 
the table reports data for one typical trace. In most cases, we 
have conducted multiple runs of the intrusion with identical 
or nearlv identical results. 

in sendmai 1, replacing part of the sendmail's running 
image with the attacker's machine code. The new code is 
then executed, causing the standard U 0  of a root-owned shell 
to be attached1 to a port. The attacker may then attach to this 
port at her leisure. This attack can be run either locally or 
remotely, andl we have tested both modes. We also varied 
the number of commands issued as root after a successful 
attack. 

In older sendmai 1 installations, the alias database 
contains an entry called "decode," which resolves to 
uudecode, a UNIX program that converts a binary file 
encoded in plain text into its original form and name. 
uudecode respects absolute filenames, so if a file "bar.uu" 
says that the (original file is "/home/foo/.rhosts," then when 
uudecode is given it will attempt to create f o o V s  

. rhosts fik. sendmail will generally run uudecode 

To date, we have been able to execute and trace: four 
attacks: sunsendmailcp [l], a syslog attack script l[2,7], 
a decode alias attack, and lprcp [3]. 

The sunsendmailcp Script uses a special COmmand 
line option to cause sendmail to append an email message 
to a file. By Using this Script O n  a file such as / . rhost s,  
a local user may obtain root access. 

The syslog attack uses the syslog interface to overllow a 
buffer in sendmail. A message is sent to the isendmail 
on the victim machine, causing it to log a very long, specially 
created error message. The log entry overflows a lbuffer 

as the semi-privileged user daemon, so email sent to decode 
cannot overwrite any file on the: system; however, if a file is 
world-writable, the decode alias entry allows these files to 
be modified by a remote user. 
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Anomaly 
sunsendmailcp 

remote 1 
remote 2 
local 1 
local 2 

syslog: 

decode 

smS65a 
smSx 
forwardloop 

lPrcP 

6 
% #  

4.1 95 

4.2 470 
1.5 137 
4.2 398 
3.4 309 
0.3 24 
1.4 12 
0.4 36 
1.7 157 
1.8 58 

5 
% # 

3.8 72 

3.9 361 
1.4 111 
3.0 235 
4.1 307 
0.3 21 
1.1 7 
0.4 27 
1.4 110 
1.6 43 

11 
% # 

5.2 215 

5.1 1047 
1.7 286 
4.0 688 
5.3 883 
0.3 57 
2.2 31 
0.6 89 
2.7 453 
2.3 138 

Table 3. Detecting Anomalies. The table 
shows the results of tracing sendmail and Ipr 
during various anomalous situations: suc- 
cessful intrusions (sunsendmailcp, syslog, 
decode, and Sprcp), unsuccessful intrusions, 
(sm565a and sm5x), and abnormal errors (for- 
ward loop). The data for the syslogd at- 
tack show the results of tracing sendmail 
(rather than tracing syssogd itself). The % 
column indicates the percentage of abnormal 
sequences in one typical intrusion, and the 
# column indicates the number of abnormal 
sequences. 

The lprcp attack script uses lpr to replace the contents 
of an arbitrary file with those of another. This exploit uses 
the fact that older versions of lpr use only 1000 different 
names for printer queue files, and they do not remove the 
old queue files before reusing them. The attack consists of 
getting Ipr to place a symbolic link to the victim file in the 
queue, incrementing lpr’s counter 1000 times, and then 
printing the new file, overwriting the victim file’s contents. 

The results for these four attacks are shown in Table 
3. The sunsendmailcp exploit is clearly detected with 
5.2% anomalous sequences (for length 11). Likewise, the 
syslog attack is clearly detected in every run, with the 
anomalous sequence rate varying between 1.7% and 5.3%, 
for a sequence window of 6. The decode attack is less 
detectable at 0.3%, and the lpr attack is detected at 2.2%. 

A second source of anomalous behavior comes from un- 
successful intrusion attempts. We tested two remote attack 
scripts, called sm565a and sm5x [5 ,  61. SunOS 4.1.4 has 
patches that prevent these particular intrusions. The results 
are shown in Table 3. Overall, the percentage of abnor- 
mal sequences is on the low end of the range for successful 
attacks. 

Error conditions provide a third source of anomalous 

behavior. In general, it would be desirable if error conditions 
produced less deviation from normal than intrusions but 
were still detectable. For the one case we have studied, a 
local forwarding loop, this is what we observed (excluding 
the decode and Ipr exploits). A forwarding loop occurs when 
a set of $HOME/ . forward files form a logical circle. We 
considered the simplest case, with the following setup: 

Although forwarding loops are not malicious, they can ad- 
versely affect machine performance, as hundreds of mes- 
sages are bounced from machine to machine. Results are 
reported in Table 3. They differ from normal by a small, yet 
clear, percentage (2.3%). 

5 Discussion 

These preliminary experiments suggest that short se- 
quences of system calls define a stable signature that can 
detect some common sources of anomalous behavior in 
sendmail and lpr. Because our measure is easy to com- 
pute and is relatively modest in storage requirements, it 
could be plausibly implemented as an on-line system, in 
which the kernel checked each system call made by pro- 
cesses running as root. Under this scheme, each site would 
generate its own normal database, based on the local soft- 
warehardware configuration and usage patterns. This could 
be achieved either with a standard set of artificial messages, 
such as those we use to build our normal database, or it 
could be completely determined by local usage patterns. It 
is likely that some combination of the two would be most 
effective. 

The data reported in this paper are preliminary. In ad- 
dition to testing other processes, especially those that are 
common routes for intrusion, we would like to extend our 
sendmai 1 experiments in several ways. These include: 
testing additional sendmai 1 exploits, conducting system- 
atic runson common sendmail and sendmail. cf vari- 
ants, and testing the effect of other system configurations on 
the normal behavior of sendmail. Another area for fur- 
ther study is the database of normal behavior, for example, 
how do we choose what behavior to trace? This is espe- 
cially relevant for sendmail because its behavior is so 
varied. If we fail to capture all the sources of legal varia- 
tion, then we will be subject to false positives. On the other 
hand, if we allow different databases at different sites, then 
some variation would be desirable both as customizations 
to local conditions and to satisfy the uniqueness principle 
stated earlier. Finally, we would like to study the normal 
behavior of sendmail running on a regularly used mail 
server. Such real-world data would help confirm the nature 
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of sendmai 1 ’ s normal behavior in practice, especially 
when compared with our set of artificial messages. 

Our approach is predicated on two important properties: 
(1) the sequence of system calls executed by a program is 
locally consistent during normal operation, and (2) some 
unusual short sequences of system calls will be executed 
when a security hole in a program is exploited. We believe 
that ‘there is a good chance that the former condition will be 
met by many programs, simply because the code of most 
programs is static, and system calls occur at fixed places 
within the code. Conditionals and function calls will change 
the relative orderings of the invoked system calls but not 
necessarily add variation to short-range correlations,. We 
are also optimistic about the second property. If a program 
enters an unusual error state during an attempted breiak-in, 
and if this error condition executes a sequence of system 
calls that is not already covered by our normal database, we 
are likely to notice the attack. Also, if code is replaced inside 
a running program by an intruder, it would likely execute a 
sequence of system calls not in the normal database, and we 
would expect to see some misses. Finally, it is highly likely 
that a successful intruder will need to fork a new process in 
order to take advantage of the system. This fork, when it 
occurs, should be detectable. 

However, if an intrusion does not fit into either of these 
two categories, our method will almost certainly rniss it 
under the current definition of normal. For example, we do 
not expect to detect race condition attacks. Typically, these 
types of intrusions involve stealing a resource (such as a file) 
created by a program running as root, before the prlogram 
has had a chance to restrict access to the resource. If the 
root process does not detect an unusual error, a nomial set 
of system calls will be made, defeating our method. This is 
an important avenue of attack, one that will require a revised 
definition of “self.” A second kind of intrusion that we will 
likely miss is the case of an intruder using another user’s 
account. User profiles can potentially provide coveraige for 
this class of intrusions which are not likely to be detectable in 
root processes. Although the method we describe here will 
not provide a cryptographically strong or completely reliable 
discriminator between normal and abnormal behavior, it 
could potentially provide a lightweight, real-time tool for 
continuously checking executing code based a1n freqpency 
of execution. 

To achieve reliable discrimination, we need to ensure that 
our method of flagging sequences as abnormal does not pro- 
duce too many false negatives or false positives. Currently, 
we record both the number of absolute misses (of a mon- 
itored process against the normal database) as, well as the 
percentage of misses (out of the total number of calls in a 
trace). Most of the exploits we have studied are very short 
in terms of the length of time the anomalous behavior takes 
place. There might be other more appropriate measures than 

the two we have used, especiaI1:y in an on-line system, where 
the length of the trace would be indefinitely long. A related 
question is the choice of pattern matching rule. We currently 
monitor only the presence or absence of patterns, not their 
relative frequency. However, thlere are many other matching 
criteria that could be tried. For example, we could represent 
the possible sequences of legal system calls as a Markov 
chain and define a criterion based on expected frequencies. 

Returning to the larger question of how to build an artifi- 
cial immune system for a computer, the work reported here 
constitutes an initial step in this direction. We have identi- 
fied a signature for self that is stable across a wide variety of 
normal behavior and sensitive to some common sources of 
anomalies. Further, the definition provides a unique signa- 
ture, or identity, for different kinds of processes. A second 
form of identity is possible because the method used to col- 
lect normal tiraces allows for a unique database at each site. 
Thus, a successful intrusion at one site would not necessar- 
ily be successful at all sites running the same software, and 
it would increase the chance off at least one site noticing an 
attack. Networks of computers are currently vulnerable to 
intrusions at least in part because of homogeneities in the 
software the:y run and the methods used to protect them. 
Our behavioral notion of ideniity goes well beyond a sim- 
ple checksum, login, password, or IP address, because it 
considers dynamic patterns of ,activity rather than just static 
components. 

However, the current system is a long way from having 
the capabilities of a natural immune system. We would like 
to use the definition of self presented here as the basis of 
future work along these lines. For example, we are not yet 
using any partial or approximate matching, such as that used 
by the immune system, and wt: are not using on-line learn- 
ing, as in the case of affinity maturation or negative selection. 
The immune system uses a host of different mechanisms for 
protection, each specialized to deal with a different type 
of intruder. A computer immune system could mimic this 
by incorporating additional mechanisms to provide more 
comprehensive security. For example, it might be possi- 
ble to include Kumar’s misuse intrusion detection methods 
117, 1-51 in the form of “memoiry cells” that store signatures 
of known intrusions. Finally, we have made no provision for 
the definition of self to change over time, although the natu- 
ral immune system is continually replenishing its protective 
cells and molecules. 

6 ConcPiisions 

This paper outlines an approach to intrusion detection 
that is quite different from other efforts to date, one that ap- 
pears promising both in its simplicity and its practicality. We 
have propose:d a method for defining self for privileged Unix 
processes, in terms of normal patterns of short sequences of 
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system calls. We have shown that the definition is compact 
with respect to the space of possible sequences, that it clearly 
distinguishes between different kinds of processes, and that 
it is perturbed by several different classes of anomalous, or 
foreign, behavior, allowing these anomalies to be detected. 
The results in this paper are preliminary, and there are at- 
tacks that our method is not able to detect. However, it is 
computationally efficient to monitor short-range orderings 
of system calls, and this technique could potentially provide 
the basis for an on-line computer immune system consisting 
of several detection mechanisms, some inspired by the hu- 
man immune system, and others derived from cryptographic 
techniques and more traditional intrusion detection systems. 
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